

Units 6 \& 9: Functions \& Nonlinear Functions (8 blocks over Q1 \& Q2)			
1	2-2d		
1	2-3a		
1	2-3b		
1	2-3c		
1	2-3d		
1	MACC.8.F.2.5		
		2-3a-d	8.F.1.1 Understand that a function is a rule that assigns to each input exactly
			one output. The graph of a function is the set of ordered pairs
			consisting of an input and the corresponding output.
		2-3c	*NGSSS.MA.8.A.1.1 Create and interpret tables, graphs, and models to
			represent, analyze, and solve problems related to linear
			equations, including analysis of domain, range, and the
			difference between discrete and continuous data.
			\{Tested on FCAT\}
		2-2d	8.F.1.2 Compare properties of two functions each represented in a different
			way (algebraically, graphically, numerically in tables, or by verbal
			descriptions). For example, given a linear function represented by a
			table of values and a linear function represented by an algebraic
			expression, determine which function has the greater rate of change.
		2-3c-d	8.F.1.3 Interpret the equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ as defining a linear function, whose
			graph is a straight line; give examples of functions that are not linear.
			For example, the function $A=s^{2}$ giving the area of a square as a
			function of its side length is not linear because its graph contains the
			points (1,1), (2,4) and (3,9), which are not on a straight line.
		not addressed	8.F.2.5 Describe qualitatively the functional relationship between two
			quantities by analyzing a graph (e.g., where the function is increasing
			or decreasing, linear or nonlinear). Sketch a graph that exhibits the
			qualitative features of a function that has been described verbally.
			Lesson
			http://learnzillion.com/lessons/237-compare-linear-and-nonlinear-functions
			Note: Unit 6 asks students to distinguish linear \& nonlinear functions in a general way. (8.F.1.3) Unit 9 builds on those foundations and asks students to investigate nonlinear functions more explicitly. (8.F.2.5) See comments in sequence document.

Q1 DFA: Unit 4 and Unit 5\&13

Number of blocks	Sections	Section to Standard Correlations	4th Quarter
			Unit 12: Exponents \& Scientific Notation (6 blocks)
1.5	5-1 a-c		
1	5-2a		
1.5	5-2b,c		
		5-1 a-c, 5-2a	8.EE.1.1 Know and apply the properties of integer exponents to generate
			equivalent numerical expressions. For example,
			$3^{2} \times 3^{-5}=3^{-3}=\frac{1}{8^{3}}=\frac{1}{27}$
		5-2b,c	8.EE.1.3 Use numbers expressed in the form of a single digit times an
			integer power of 10 to estimate very large or very small quantities,
			and to express how many times as much one is than the other. For
			example, estimate the population of the United States as 3×10^{8} and
			the population of the world as 7×10^{9}, and determine that the world
			population is more than 20 times larger.
			http://learnzillion.com/lessonsets/272-estimate-and-compare-with-integers-to-the-power-of-10
			8.EE.1.4 Perform operations with numbers expressed in scientific notation,
			including problems where both decimal and scientific notation are
			used. Use scientific notation and choose units of appropriate size
			for measurements of very large or very small quantities (e.g., use
			millimeters per year for seafloor spreading). Interpret scientific
			notation that has been generated by technology.
			http://learnzillion.com/lessonsets/276-perform-operations-with-numbers-expressed-in-scientific-notation-including-decimals
			Unit 14: Volume of Cones, Spheres, \& Cylinders (6 blocks)
3	10-2b, c		
1	9-2c		
		10-2b, c	8.G.3.9 Know the formulas for the volumes of cones, cylinders, and spheres
			and use them to solve real-world and mathematical problems.
		9-2c	NGSSS MA.8.G.5.1 Converting between systems; Converting capacity;
			Converting rates
			Note: Cylinders and cones have previously been taught in 7th grade. They are
			now in 8th grade CCSSM, along with spheres.

S2 DFA Units 1, 2, 8, 10, 11, 12, 14-emphasis Q4

